Analisis de las Formas: Maquetas de Planos Blancas

¿Qué debemos enseñar a un alumno de arquitectura el primer día, de la primera semana del primer curso de grado? La respuesta es geometría y complejidad.

La geometría esencial

Desde hace varios años, dentro del marco de la asignatura de análisis de las formas, estamos llevando a la práctica un ejercicio multicapa que consiste en enfrentar el alumno al núcleo del proyectar contemporáneo de la arquitectura: la búsqueda de las geometrías de la complejidad. La serie de ejercicios propuestos se desarrollan en un entorno aislado de aquello que podría distorsionar la atención del alumno. Una especie de trabajo de laboratorio donde aislamos la arquitectura de tres aspectos fundamentales: en los ejercicios que proponemos no existe la gravedad, no existe la escala, no existe el programa. Lo que proponemos al alumno es una serie de ejercicios de proto-arquitecturas, unas maquetas con las que enfrentarse solamente a la geometría, solamente a la complejidad. En realidad esta propuesta es una especie de ejercicio pre “vitrubiano”, no hay fírmitas, no hay utílitas, no hay venustas.

Este es un viaje todavía más arcaico en el ámbito de la arquitectura, en tanto que nos remontamos al momento crítico y mítico en que el primer geómetra toma la primera medida de un mundo asilvestrado, nos estamos remontando al origen de la geometría.

En 1962 Jacques Derrida publica su primer libro (empezado en 1957) sobre un texto que Husserl había redactado en 1936: El origen de la geometría. A parte de cuestiones más complejas algo alejadas sin duda de un alumno de primer curso de arquitectura, el camino iniciático que queremos emprender es el mismo que en cierta manera emprendió Derrida a costa de los textos de Husserl. En esa primera medición geométrica se funda una ambivalencia radical. Por un lado se funda un lenguaje, la geometría (lo que prácticamente se lo mismo que decir que se funda la arquitectura). Por otro lado se distingue la condición de lo esencial, de aquello realizado de aquello escrito. La geometría es bajo la lupa de Derrida un lenguaje, una escritura como instancia de sedimentación y, por consiguiente capaz de crear tradición a partir de la transferencia de un cierto cuerpo de conocimiento. Bajo esta concepción gramática de la geometría queremos introducir al alumno en la arquitectura, confrontar al pre-geómetra a un nuevo código del lenguaje, una encapsulación especifica de la realidad basada en la toma de referencias, en la toma de medidas. Tal como lo cuenta Derrida, en Husserl hay una pregunta a lo esencial, a un a priori de la historia, el punto cero de toda condición de posibilidad. Este punto inicial consta de una fundación originaria (una primera medida que construye el todo), una sedimentación entendida como la inscripción de eso que nace y surge (de ahí la relación con la escritura y el lenguaje) y una reactivación, es decir aquello que ha surgido, debe ser una y otra vez, debe provocar una transferencia y por tanto constituir una tradición. Aquí queremos incorporar al alumno a una corriente mayor, la tradición de la geometría en la arquitectura, hacerle entender que hay una herramienta común a las más antiguas construcciones y los más modernos edificios. Aislar al alumno de la gravedad, de la escala y del programa es dejarlo a solas con la épica magnitud de lo geométrico.

Las geometrías de la complejidad

A modo de libro de ruta, el acceso a le geometría se divide en varias operaciones, paralelo a las diferentes modulaciones con las que podemos operar geométricamente. La única orden posible es la búsqueda de la máxima complejidad.

Maquetas de Planos Blancas

En primer lugar, modulamos la geometría a partir de la disposición espacial do planos. A modo de instrucciones precisas y concisas, dotamos al alumno con 10 planos de cartón pluma blanco do aproximadamente 15x15cms y exactamente 5mm de espesor.

No hay nada más emocionante que construir el mundo con 10 planos. Las sombras, la bidimensionalidad de un modesto plano, la intrincada interacción entre múltiples repeticiones posibles van dando forma a una primera geometría compleja. Blanco sobre blanco.


Profesores: Manuel Arenas y Aitor Estévez
Texto: Miquel Lacasta
Fotografías: Aitor Estévez

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s